Люминесцентные материалы

Заключительная лекция

План лекции

- Фотолюминесценция
- Люминофоры для белых светодиодов
- Наноразмерные люминофоры

Оптическая спектроскопия

A

sources and the spectroscopies related to the different spectral regions. XRF, X-Ray Fluorescence; AEFS, Absorption Edge Fine Structure; EXAFS, Extended X-ray Absorption Fine Structure; NMR, Nuclear Magnetic Resonance; EPR, Electron Paramagnetic Resonance. The shaded region indicates the optical range.

Типы переходов в кристаллах

Основные типы переходов в диэлектрических кристаллах.

1 – межзонные переходы,

2 – внутрицентровые переходы,

3 – переходы с переносом заряда,

4 – фотоионизация,

5 – переходы с верхней остовной зоны в зону проводимости,

6 – кросслюминесценция (остовно-валентные переходы)

Двухуровневый центр в конденсированном веществе

Figure 1.10 (a) The absorption and emission energies for a two-level system (rigid lattice).(b) The absorption and emission energies showing the Stokes shift (vibrating lattice).

Люминесценция

Table 1.2 The various types of luminescence	
--	--

Name	Excitation mechanism		
Photoluminescence	Light		
Cathodoluminescence	Electrons		
Radioluminescence	X-rays, α -, β -, or γ -rays		
Thermoluminescence	Heating		
Electroluminescence	Electric field or current		
Triboluminescence	Mechanical energy		
Sonoluminescence	Sound waves in liquids		
Chemiluminescence and	Chemical reactions		
bioluminescence			

Атомные орбитали

Формы s-, p-, d-, f- орбиталей в атоме водорода

Люминофоры для белых светодиодов

Люминофоры для белых светодиодов

Figure 3.2: A theoretical prediction of the radial distribution of the orbitals of a rareearth ion (Gd⁺). The 4f orbital is seen to lie inside the 5s and 5p orbitals. Illustration from Ref. [28].

Редкоземельные ионы в материалах имеют валентность 2+, 3+ и 4+. Происходит заполнение экранированной 4f оболочки. В трехвалентном состоянии La и Lu имеют закрытую fоболочку

 $[Xe] 4f^{N} 5s^{2} 5p^{6};$

L La Ce Pr Nd Pm Sm Eu Gd Tb Dy Ho Er Tm Yb Lu

•La and Lu – closed outer shell (N = 0 and 14)

•All the others - outer shell 4f partially filled

Люминофоры для белых светодиодов

Element	Symbol	Atomic no.	Atomic wt.	Electronic state	Fundamental State	Ionic radius (Å)
Cerium	Ce	58	140,12	[Xe]4f ¹ 5s ² 5p ⁶	² F _{5/2}	1.11
Praseodymium	Pr	59	140,98	[Xe]4f ² 5s ² 5p ⁶	${}^{3}\mathrm{H}_{4}$	1.09
Neodymium	Nd	60	144,24	$[\mathrm{Xe}]\mathrm{4f}^{3}\mathrm{5s}^{2}\mathrm{5p}^{6}$	⁴ I _{9/2}	1.08
Promethium	Pm	61	145	$[\mathrm{Xe}]\mathrm{4f}^{4}\mathrm{5s}^{2}\mathrm{5p}^{6}$	${}^{5}I_{4}$	1.06
Samarium	Sm	62	150,4	[Xe]4f ⁵ 5s ² 5p ⁶	⁶ H _{5/2}	1.04
Europium	Eu	63	151,96	[Xe]4f ⁶ 5s ² 5p ⁶	$^{7}F_{0}$	1.03
Gadolinium	Gd	64	157,25	[Xe]4f ⁷ 5s ² 5p ⁶	⁸ S _{7/2}	1.02
Terbium	Tb	65	158,93	[Xe]4f ⁸ 5s ² 5p ⁶	$^{7}F_{6}$	1.00
Dysprosium	Dy	66	162,5	[Xe]4f ⁹ 5s ² 5p ⁶	⁶ H _{15/2}	0.99
Holmium	Но	67	164,93	$[Xe]4f^{10}5s^{2}5p^{6}$	${}^{5}I_{8}$	0.97
Erbium	Er	68	167,26	[Xe]4f ¹¹ 5s ² 5p ⁶	⁴ I _{15/2}	0.96
Thulium	Tm	69	168,93	[Xe]4f ¹² 5s ² 5p ⁶	${}^{3}\mathrm{H}_{6}$	0.95
Ytterbium	Yb	70	173,04	[Xe]4f ¹³ 5s ² 5p ⁶	² F _{7/2}	0.94

Люминофоры для белых светодиодов. Редкоземельные элементы

Квантовые числа

Квантовое число	Разрешенные состояния	Что определяет
Главное, <i>n</i>	1, 2, 3 ∞	Энергию и размер орбитали
Орбитальное, <i>l</i>	(n-1), (n-2), 0	Форму орбитали и момент количества движения электронов
Магнитное орбитальное, <i>т</i> _l	± l , ±(l -1), 0	Ориентацию орбитали и поведение электрона в магнитном поле
Спиновое, <i>s</i>	1/2	Внутренний момент электрона
Магнитное спиновое, <i>m</i> _s	+1/2, -1/2	Ориентацию спина относительно выделенной оси

Расщепление 4f уровней

Splitting of energy levels of 4fⁿ electronic configuration due to: I – Coulomb interaction; II – spin-orbit interaction; III – crystal-field interaction

Crystal field splitting for 4*f*ⁿ⁻¹5*d* electronic configuration

The 5*d* electrons are not effectively shielded by other electrons, and the crystal field influence on the energy levels of $4f^{n-1}5d$ electronic configuration is **strong**. Accordingly, crystal field splitting of 5*d* levels is large and the energies of levels within $4f^{n-1}5d$ electronic configuration can strongly differ for different crystal hosts.

Crystal-field splitting of $5d^1$ configuration for tetragonal Ce³⁺ center: I – free ion, II – O_h , III – O_h + spin-orbit, IV – C_{4V}

Спин-орбитальное взаимодействие. Расщепление f-состояния

G. H. Dieke and H. M. Crosswhite Appl. Opt. 2, 675 (1963)

Рис.4.10. Диаграмма уровней энергии трехвалентных лантаноидов. Знаком полукруга под уровнем обозначены состояния с которых наблюдалось свечение.

Спектры RE²⁺

1

Уровни лантаноидов в кристалле

Положение основных 4f уровней и наинизших возбужденных 5d-уровней редкоземельных трехвалентных (RE³⁺) и двухвалентных (RE²⁺) ионов в зонной схеме кристалла фторида лантана. Верхняя зона – зона проводимости, нижняя зона – валентная зона.

P.Dorenbos, J. luminescence, 2013, 135, 93-104

Свечение Re³⁺ в щелочно-земельных фторидах

Cryst

al

Tm

(5d→

Er

(5d→4I

	³ H ₆), nm	_{15/2}), nm	_{9/2}), nm), nm	_{9/2}), nm	_{9/2}), nm
CaF ₂	168,4	166,0	183,9 17.7 ns	128.9 129 [2]	168.5	171.1
SrF ₂	166,4 167 HS[1]	164,2 164.5 HS[1]	180,0 15.3 ns	No	167.2	172.0
BaF ₂	164,6	163,7	179,2 12.3 ns	No	165.9	174.1

Nd

(5d→⁴I

Gd

 $(5d \rightarrow 4I_{9/2})$ $(5d \rightarrow 4I)$

Ho

Sm

(5d→⁴I

1 Ivanovskih et al Journal of Luminescence 122-123 (2007) 28-31 2 V.N.Makhov et.al. ФТТ (2008) 50 1565

4f and 5d уровни ионов Ce³⁺ в тетрагональном окружении

Люминофоры с редкоземельными ионами

Ионы церия

 $Sr_{1-x}Ca_xSe:Eu^{2+}$

Люминофоры с редкоземельными ионами

Excitation and emission spectra of LuVO4:5 mol% Eu3+ (A), LuVO4:5 mol% Dy3+ (B), LuVO4:5 mol% Sm3+ (C), and LuVO4:5 mol% Er3+ (D). The insets are the corresponding luminescence photographs of the samples upon excitation at 254 nm with a UV lamp.

Люминофоры с редкоземельными ионами

NIR-to-visible UC emission spectra of LuVO4:Yb3+/Er3+ (A), LuVO4:Yb3+/Tm3+ (B), and LuVO4:Yb3+/Ho3+ (C) under 980 nm laser excitation. (D) The proposed energy transfer mechanisms under 980 nm diode laser excitation in LuVO4:Yb3+/Er3+, LuVO4:Yb3+/Tm3+, and LuVO4:Yb3+/Ho3+. The insets are the corresponding luminescence photographs of the samples upon excitation at 980 nm light.

Люминофоры с редкоземельными ионами. Upconversion and cascade emission

Квантовый выход больше 1

Ο.

Каскадное свечение Pr³⁺ в кристалле YF₃

Pr³⁺ ion

Configuration – 4f²

Singlet ¹S₀, ¹D₂, ¹G₄, ¹I₆

Triplet ³P_{0,1,2} ³F_{2,3,4} ³H_{4,5,6}

Energy-level scheme of Pr^{3+} in YF_3 . The transition branching ratios for the main transitions of the cascade are also given (from S.Kusk, et.al. PHYSICAL REVIEW B 71, 165112 (2005))

Emission BaF₂

Emission spectra of BaF_2 crystal doped by PrF_3 at 78 K. Samples were excited at 6.9 eV (full curves) or at 6.0 eV (dotted curve). Middle right inset – Pr concentration dependence of intensities I(2.5 eV)/I(4.8 eV) ratio at 6.9 eV excitation at 78 K. Bottom right inset - excitation spectra of BaF_2 -0.3 mol.\% PrF_3 for emission bands at 2.57 and 4.8 eV at temperature 78 K. No measurable emission was observed in BaF_2 -0.015 % PrF_3 under 7.0 eV excitation at 90 K.

Свечение Nd3+. Nd-YAG лазеры

Измерение спектров

 $I_{\rm em} = \eta (I_0 - I)$ ($I_{\rm em}$) = $k_g \times \eta \times I_0 (1 - 10^{-(OD)})$ ($I_{\rm em}$) $\cong k_g \times \eta \times I_0 \times (OD)$

 $T = I/I_0, \qquad OD = \log(I_0/I),$

Sample Channel

Mirro

Спектрометры вакуумного ультрафиолета

 CaF_2 -0.1 моль.% EuF_3

CaF₂ -1 моль.% PrF₃

Спектрофотометр L950, спектрометр LS55

Спектры поглощения

Fig. 1. Absorption spectra of CaF2, SrF2 and BaF2 crystal doped by EuF3.

Fig. 2. Absorption spectra of CaF_2 , SrF_2 and BaF_2 crystal doped by YbF_3 at room temperature. Dashed curves show the fitted CT_1 absorption bands.

Спектры возбуждения, свечения

Fig. 3. Excitation spectra of CaF_2 crystal doped by 0.1 mol.% EuF_3. Emission of Eu ions was monitored at 2.1 eV \pm 0.1 eV at 78 K.

Fig. 5. Emission spectra of SrF₂ crystal doped by 0.01 mol.% EuF₃ in the region of ${}^{5}D_{0}-{}^{7}F_{1}$ transitions at 78 K with vacuum ultraviolet excitation into 7.8 or 6.7 eV absorption bands. Crystal was excited by unfiltered light from DDS30 lamp which was directly connected with MgF₂ window of cryostat (curve 1), and separated from window by 5 mm air space (curve 2). Position of C_{4v}, O_h lines were taken from paper [7,8].

Fig. 4. Emission spectra of CaF₂ crystal doped by 0.1 mol.% EuF₃ in the region of ${}^{5}D_{0}-{}^{7}F_{1}$ transitions at 78 K with vacuum ultraviolet excitation. Crystal was excited by unfiltered light from DDS30 lamp which was directly connected with MgF₂ window of cryostat (curve 1) (excitation mainly into CT₁ band), and separated from window by 5 mm air space (curve 2) (excitation into CT₂ band).

Квантово-размерные системы. Quantum confinement

Квантово-размерные системы. Quantum confinement

Квантово-размерные системы. Квантовые ^{Quantum Confinement}

8 nm

Квантово-размерные системы.

Квантово-размерные системы.

K. Jacobi, Prog. Surf. Science 71, 185 (2003).

Квантово-размерные системы.

CdSe quantum dots

Квантово-размерные системы. Применение

multi-color staining of different organelles in living cells

narrow emission spectra allow multicolor experiments

in-vivo observation of tumors

Bull's-eye. Red quantum dots injected into a live mouse mark the location of a tumor.

tuning to tissue extinction minimum

Квантово-размерные системы. Применение

due to quantum size effect cover large spectral range

. . . .

Квантово-размерные системы. Наночастицы кварца

Квантово-размерные системы. Наночастицы кварца

FIG. 1. Models of the dehydroxylation reaction involved in the two adjacent geminal silanol groups: (a) formation of an edge-sharing dimer (scheme 1), (b) formation of a defect pair consisting of =Si(O₂) and =Si: (scheme 2).

Квантово-размерные системы. Наночастицы кварца

Квантово-размерные системы. Применение

СЭМ и флуоресцентное изображение (конфокальный микроскоп) кремнистой створки S. acus, культивированной с добавлением 1 мкМ NBD-N2H. Масштаб - 10 мкм.